- sqlite-utils - pygad

Sqlite-utils Example

import sqlite_utils import pygad import numpy """ Given the following function: y = f(w1:w6) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + 6wx6 where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7) and y=44 What are the best values for the 6 weights (w1 to w6)? We are going to use the genetic algorithm to optimize this function. """ function_inputs = [4,-2,3.5,5,-11,-4.7] # Function inputs. desired_output = 44 # Function output. def fitness_func(solution, solution_idx): # Calculating the fitness value of each solution in the current population. # The fitness function calulates the sum of products between each input and its corresponding weight. output = numpy.sum(solution*function_inputs) fitness = 1.0 / numpy.abs(output - desired_output) return fitness fitness_function = fitness_func num_generations = 100 # Number of generations. num_parents_mating = 7 # Number of solutions to be selected as parents in the mating pool. # To prepare the initial population, there are 2 ways: # 1) Prepare it yourself and pass it to the initial_population parameter. This way is useful when the user wants to start the genetic algorithm with a custom initial population. # 2) Assign valid integer values to the sol_per_pop and num_genes parameters. If the initial_population parameter exists, then the sol_per_pop and num_genes parameters are useless. sol_per_pop = 50 # Number of solutions in the population. num_genes = len(function_inputs) last_fitness = 0 def callback_generation(ga_instance): global last_fitness print("Generation = {generation}".format(generation=ga_instance.generations_completed)) print("Fitness = {fitness}".format(fitness=ga_instance.best_solution()[1])) print("Change = {change}".format(change=ga_instance.best_solution()[1] - last_fitness)) last_fitness = ga_instance.best_solution()[1] # Creating an instance of the GA class inside the ga module. Some parameters are initialized within the constructor. ga_instance = pygad.GA(num_generations=num_generations, num_parents_mating=num_parents_mating, fitness_func=fitness_function, sol_per_pop=sol_per_pop, num_genes=num_genes, on_generation=callback_generation) # Running the GA to optimize the parameters of the function. ga_instance.run() # After the generations complete, some plots are showed that summarize the how the outputs/fitenss values evolve over generations. ga_instance.plot_fitness() # Returning the details of the best solution. solution, solution_fitness, solution_idx = ga_instance.best_solution() print("Parameters of the best solution : {solution}".format(solution=solution)) print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness)) print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx)) prediction = numpy.sum(numpy.array(function_inputs)*solution) print("Predicted output based on the best solution : {prediction}".format(prediction=prediction)) if ga_instance.best_solution_generation != -1: print("Best fitness value reached after {best_solution_generation} generations.".format(best_solution_generation=ga_instance.best_solution_generation)) # Saving the GA instance. filename = 'genetic' # The filename to which the instance is saved. The name is without extension. ga_instance.save(filename=filename) # Loading the saved GA instance. loaded_ga_instance = pygad.load(filename=filename) loaded_ga_instance.plot_fitness() db = sqlite_utils.Database(memory=True) print(list(db.query("select 3 * 5"))) print('sqlite-version', list(db.query("select sqlite_version()")))