Displaying Sprites with a Sega Saturn
and the Sega Game Library

Reinhart and others

2003

1 Changes

e 2003.09.17 : fixes (Vreuzon, Rockin’B, Antime);
e 2003.09.16 : some changes (Vreuzon);

e 2003.09.15 : document creation (Reinhart).

2 Introduction

Here is a little tutorial. It focus on displaying a 24 bits single sprite (more to come). Feedbacks,
corrections, rewiews are welcome (my english may be bad).

To use this tutorial, you have to get a running dev environment. You can get all you need at
antime’s site '. You also have to know some C or C4+ .

2.1 Colordepth and paletted sprites digression

The color table can either hold 1) Color bank codes (VDP2 palettes), allowing framebuffer rotations
and scrolls; 2) RGB data (no palette). In this tutorial, we focus on 2) for simplicity, but you should
be aware of its limitations and how to bypass them.

e Rockin’-B complains about paletted sprites :

For sprites it would be much better to use paletted images?, because of memory
usage. I remember Reinhards stating on his site that he tried to get more sprites
managed. Paletted sprites is the solution. But no one did this. What I read is
that the used pallette is the same that is registered inside VDP2. But there seems
to be another way to place multiple palettes of 16 colors into VDP1 RAM.

e “Yes, it is”, Antime answers :

In order to “place multiple palettes of 16 colors into VDP1 RAM”, The "Color
Mode” bits in the CMDPMOD command table field must be set to 001. The
address of the color table divided by 8 is stored in the CMDCOLR field. Set the
MSB (Most Significant Bit) of the color to 1 for it to be interpreted as RGB. If
VDP1 is in 8bpp mode (framebuffer rotation or hires) you can only use color bank
codes.

Using the SGL, you can use paletted data by setting the right face/sprite
attribute data: The Mode should be CL16Look, the lookup table address (divided
by 8, I assume) should be given as Color and the Option should be UsePalette.

L Antime feeble saturn page : http://www.helsinki.fi/~ammonton/sega/
224 bit depth is not paletted: RVB values are stored

I think you have to manage the CLUTs (Color LookUp Table) yourself, couldn’t
see any references in the manual.

Also note that color number zero is used as transparent, unless the disable bit
is set. If you enable end codes, you lose another color (number 15 with 4bpp data).

Let’s go back to our 24 bits sprites for now.

3 Transform the sprite into a .C char

The sprite

1. Size — The width must be a multiple of eight pixels (max 504 pixels) while the height can
be given in one-pixel precision (max 255 pixels). We will assume that our sprite is 16x16.

2. Color Depth — convert your sprite to 24bit colordepth and raw format. We will assume that
our first sprite is named ringl.raw

Now use SSConv to create a .C file :
\code{ssconv ringl.raw ringl.c true c ringil}
The ringl.c file should look like that:

// Source File: ringl.raw
// sprite : 16x16

unsigned short ringl{[}{1} = {
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x8210, 0x839C, 0x839C,
(- . -) >
0x8108, 0x8108, 0x8108, 0x0000, }
0x0000, 0x0000, 0x0000, 0x0000 };
}

unsigned long ringlSize = 256;
TIPS :

e In order to have a transparent background, replace all occurence of the first hexadecimal
value by 0x0000. This first value represent the ’transparent’ color.

e If you don’t like the command line, the conversion can be completed using SegaConverter,
a windows GUI app, allowing you to cut and paste sprites from and to other apps. The
bitmap depth has to be 32 bits. You will be asked the background (transparent) color when
you save to a .C file. Rockin-B says : “ Don’t give up if it says that the color format is not
supported. Create a new file in Converter, select proper resolution and 32K colors. Then
open the sprite as BMP file, select all, copy and paste into the new file. Deselect the pasted
image and saving will be possible. Save as SGL .c. Finished!”

4 Define sprite attributes and data, define textures

4.1 SGL structures

The SGL uses three straightforward structures (PICTURE,TEXTURE and SPR_ATTR), as well as asso-
ciated creation crystal-clear macros (PICDEF, TEXDEF and SPR_ATTRIBUTE), defined in sgl.h):

#define SPR_ATTRIBUTE(t,c,g,a,d) \
{t, (a) | (((d)>>24)&0xc0) ,c,g, (d)&0x0f3f}

typedef struct {

Uint16 texno ;
Uint16 atrb ;
Uint16 colno ;
Uint16 gstb ;
Uint16 dir ;

} SPR_ATTR ;

#define TEXDEF (h,v,presize) \
{h,v, (cgaddress+(((presize)*4)>>(pal))) /8, (((h)&0x1£f8)<<5 | (v))}

typedef struct {

Uint16 Hsize ;

Uint16 Vsize ;

Uint16 CGadr ;

Uint16 HVsize ;
} TEXTURE ;

#define PICDEF (texno,cmode,pcsrc) \
{(Uint16) (texno) , (Uint16) (cmode) , (void *) (pcsrc)?}

typedef struct {

Uint16 texno ;

Uint16 cmode ;

void *pcsrc ;
} PICTURE ;

Nobody will ask you to fully understand the lines above.
Anyway, you now have to create a new file that includes <sgl.h> as well as the C file we have
created (the ringl.c file). This new file will be called spr_data.c.

#include "sgl.h" //library needed

#include "ringl.c" //the sprite you want to display
4.1.1 Attributes

Add:

SPR_ATTR attr([] = {
SPR_ATTRIBUTE(O,No_Palet,No_Gouraud,CL32KRGB|ECdis,sprNoflip),

};

The first parameter is important as it is a reference to the sprite. Our ringl is sprite n°® 0. Keep

parameter 2, 3 and 4 like that. 5th parameter allow to flip sprite(mirroring).

4.1.2 Size

Add:

TEXTURE tex_spr[] = {
//(sprite_width, sprite_height, prev_sprite_width*prev_sprite_height)
TEXDEF(16,16,0),

3

Position of the line TEXDEF(a,b,c) in the structure is important as the first TEXDEF (a,b,c) is
related with SPR_ATTRIBUTE(O,...).
4.1.3 Sprite attribute and sprite data connexion

PICTURE pic_spr[] = {
//attribute n°0, number of color, which sprite to display
PICDEF(0,COL_32K,ringl),

}

TODO : if COL_32K is the number of color, why is it already defined in the attribute ?

4.2 Optional definitions (usefull, but not related to the SGL)
4.2.1 Initial position of the sprite on the screen
Add:

FIXED stat[][XYZS] = {

//Position of ringl (X_pos, Y_pos, Z_pos(depth), scale)}
{toFIXED(50) ,toFIXED(-130) ,toFIXED(169) ,toFIXED(1.0)}

};
4.2.2 Rotation angle

ANGLE angz[] = {
DEGtoANG(0),
};

Save this file as spr_data.c

5 Load and display the sprite

Now, the main.c file. Add:

[*/
/* Sprite tutorial 1 */

et ettt */
#include "sgl.h"

extern TEXTURE tex_sprl[];
extern PICTURE pic_spr([];
extern FIXED stat[] [XYZS];
extern SPR_ATTR attr[];
extern ANGLE angz[];

[m */
/* Set_sprite : register all sprite define in Spr_data.c */
e ettt ettt e e *x/

static void set_sprite(PICTURE *pcptr , Uint32 NbPicture) {
TEXTURE *txptr;

for(; NbPicture-- > 0; pcptr++){
txptr = tex_spr + pcptr->texno;

s1DMACopy ((void *)pcptr->pcsrc,
(void #) (SpriteVRAM + ((txptr->CGadr) << 3)),
(Uint32) ((txptr->Hsize * txptr->Vsize * 4) >> (pcptr->cmode)));

}
}
e et ettt *x/
/* disp_sprite : display sprite selected */
Y e T T */

static void disp_sprite(int SpriteNo) {
s1DispSprite ((FIXED *)stat[SpriteNo],
(SPR_ATTR *) (&attr[SpriteNo] .texno), DEGtoANG(0));

}
[*/
void ss_main(void)
{
s1InitSystem(TV_320x224,tex_spr,1);
//register the sprite, here we only have 1 sprite
set_sprite(pic_spr,1);
while(1) {
//display our sprite (note the first sprite is n\x{00BO} 0)
disp_sprite(0);
s1Synch() ;
}
}

Add the spr_data.c in your OBJECTS files (containing the objects to be linked). Compile
these files and your Saturn will display a sprite.

